
Print ListView and TreeView Controls' Contents Downloaded from: CVibes.net Page 1 of 11

Print ListView and TreeView Controls' Contents
Source: http://www.vb2themax.com/HtmlDoc.asp?Table=Articles&ID=50

by Marco Losavio

Note: As of April 2004, this article can no longer be found on vb2themax.com. It appears that they now only cover
VB.NET and C#. I’ve decided to post this article to my Web site, http://CVibes.net, since I think there are still some
Visual Basic 6 users who will find this information useful.

These two controls are frequently used to display structured data, so sooner or later you'll
want to print their contents exactly as it appears to the end user.

With Visual Basic 5 came the capability to build ActiveX DLLs and OCXes, and since then a lot of VB developers have
exploited it at their best. It is no coincidence that there are plenty of new VB-authored components in the commercial and
shareware market, and in my opinion the reason is that VBers have always been users of such components, and therefore
have very clear ideas about how they should be designed and implemented.

Whenever I have to create a new ActiveX control or a hierarchy of objects in an ActiveX DLL, I adopt my own, personal
strategy. Instead of rushing to the code editor to implement the component, I start from the client side, and I try to imagine
how a client application might use the control or the DLL. This gives me a good starting point for defining all the
properties, methods, and events that the component should expose.

Recently, I had to repeatedly solve a recurring programming problem. In the company I work with we often use the
ListView and TreeView controls as a means for displaying database data. These controls serve this purpose nicely, also
because they let the end user adjust how data is display, for example by changing the width of a ListView's column, or
expanding and collapsing nodes in a TreeView. The problem I had to face is: How can users print the contents of such
controls exactly as it appears on their monitors? It would be beautiful if there were a method such as:

ListView1.Print

Unfortunately, no such method exists, so I had to roll up our sleeves and write all the code by myself. Faithful to my usual
habits, I decided to start by defining what the above Print method is supposed to do, and write the actual code only later.

The Class Hierarchy
Firstly, it would be great if you could set a title with its font and alignment, and reserve some space on the printed page
for the header and for the footer, for example to insert the page number. Even better, it should be possible to set page
margins, the page size and orientation. I could go on with this requirement list, but I think that's enough for now. In order
to easily set such a great number of properties, using a single object might quickly prove an inadequate approach. A much
better solution is build a class hierarchy.

The root object in this hierarchy is the CPrintListView class, which exposes a Control property (to which you assign the
ListView control to be printed) and the ImageList property (which receives a reference to a companion control that holds
all the necessary icons):

Dim oSLV As New CPrintListView
Set oSLV.Control = ListView1
Set oSLV.ImageList = ImageList1

Print ListView and TreeView Controls' Contents Downloaded from: CVibes.net Page 2 of 11

All page attributes and margins can be set through the secondary Page object:

With With oSLV.Page
 .BottomMargin = 2 'cm
 .TopMargin = 2
 .LeftMargin = 2
 .RightMargin = 2
 .Footer.Text = "Page. <pag>"
 .Footer.Font.Name = "Arial"
 .Footer.Font.Size = 8
 .Footer.Alignment = vbCenter
End With

while title attributes are defined through the Title object:

With oSLV.Title
 .Font.Bold = True
 .Alignment = vbCenter
 .Font.Italic = True
 .Font.Name = "Times New Roman"
 .Font.Size = 14
End With

Notice that the above code snippets make use of some VB types and objects, such as for the Font property (StdFont) and
for the Alignment property (AlignmentConstants). This lets us edit code more quickly, thanks to IntelliSense.

The FontItem and HeaderFont properties are initially assigned a copy of the Font object exposed by the ListView control,
so that you can later modify their individual font properties – such as Name, Size, Bold, Italic, etc. – without affecting the
control's Font.

The hierarchy includes two more objects: CPage and CText. The former is used to define the page attributes and the
latterm to define title, header and footer text. The CPrintListView e CPrintTreeView classes have a CPage property to
define the page margins, orientation and size. Headers and footers are, in turn, defined as properties of CText type of the
CPage object. The CText object allows to define a textual caption with font (StdFont) and alignment
(AlignmentConstants) attributes. The complete class hierarchy is shown in Figure 1.

Print ListView and TreeView Controls' Contents Downloaded from: CVibes.net Page 3 of 11

Figure 1A. The CPrintListView object hierarchy.

Print ListView and TreeView Controls' Contents Downloaded from: CVibes.net Page 4 of 11

Figure 1B. The CPrintTreeView object hierarchy.

Print ListView and TreeView Controls' Contents Downloaded from: CVibes.net Page 5 of 11

Printing a ListView control

The CPrintListView class can only print the contents of a ListView control in lvwReport view mode. In this view mode
the ListView control has one or more columns, each one with its header, size and alignment. Moreover, every item is
associated to an image which, together with the font, defines the overall printing row height. The CPrintListView class
lets you define an header font (HeaderFont) and an item font (FontItem), which are initially set equal to the control's Font
property. To print the ListView header the code iterates on the ColumnHeaders collection to read all column properties, as
howed in Listing 1.

Listing 1. ListView headers are printed by a loop on the ColumnHeaders collection. At each iteration the code
checks the current column alignment in order to calculate where the print operation should start.

Sub PrintHeaderLV(LV As ListView, lLeft As Long, lRight As Long)
 Dim ch As ColumnHeader
 Dim iCHWidth As Long
 Dim yMarg As Long

 yMarg = Printer.CurrentY

 For Each ch In LV.ColumnHeaders
 If ch.Width 0 Then
 Printer.Line (lLeft + iCHWidth, yMarg + _
 Printer.TextHeight("A")) - (lLeft + iCHWidth + _
 ch.Width, yMarg + Printer.TextHeight("A"))

 If ch.Alignment = lvwColumnLeft Then
 Printer.CurrentX = lLeft + iCHWidth
 ElseIf ch.Alignment = lvwColumnCenter Then
 Printer.CurrentX = lLeft + iCHWidth + (ch.Width _
 - Printer.TextWidth(ch.Text)) / 2
 ElseIf ch.Alignment = lvwColumnRight Then
 Printer.CurrentX = lLeft + iCHWidth + ch.Width _
 - Printer.TextWidth(ch.Text)
 End If

 Printer.CurrentY = yMarg
 Printer.Print ch.Text
 iCHWidth = iCHWidth + ch.Width
 End If
 Next
 Printer.CurrentY = Printer.CurrentY + 2 * Screen.TwipsPerPixelY
End Sub

Starting from the left margin (Page.LeftMargin) and setting the top margin (yMarg) the class calculates the
CurrentX value by adding the width of each column:

For Each ch In LV.ColumnHeaders
 Printer.CurrentX = Page.LeftMArgin + iCHWidth
 Printer.CurrentY = yMarg
 Printer.Print ch.Text
 iCHWidth = iCHWidth + ch.Width
Next

Print ListView and TreeView Controls' Contents Downloaded from: CVibes.net Page 6 of 11

To print the header with its correct alignment, the actual X coordinate where to print each column header is
calculated as follows:

lLeft = Page.LeftMArgin
If ch.Alignment = lvwColumnLeft Then
 Printer.CurrentX = lLeft + iCHWidth
ElseIf ch.Alignment = lvwColumnCenter Then
 Printer.CurrentX = lLeft + iCHWidth + (cw - iTextWidth) / 2
ElseIf ch.Alignment = lvwColumnRight Then
 Printer.CurrentX = lLeft + iCHWidth + cw - iTextWidth
End If

where cw is the current column size to print (ch.Width) and iTextWidth is the text size (ch.Text) returned by
the TextWidth Printer object's method.

To complete the header the code prints a separating line. To do so, at each cycle iteration, it prints a horizontal
line whose length is equal to the current column width:

Printer.Line (lLeft + iCHWidth, yMarg + Printer.TextHeight("A"))- _
 (lLeft + iCHWidth + ch.Width, yMarg + Printer.TextHeight("A"))

To calculate the Y value the routine adds the top margin to the value that the Printer object's TextHeight method returns
when the 'A' char is passed as an argument.

Printing individual cells of the controls is surely more complex than just printing the column headers. For one, we have to
take page breaks into account, and decide when an item should be printed on the next page rather than on the current page.
To do this we have to verify that the item height (itmX.Height) isn't greater than the remaining space on the page:

CanPrintItem = (Printer.CurrentY + hRow) < _
 (Printer.ScaleHeight - iBottomMargin)

Just before starting a new page, we must print the footer and raise an event that the programmer can trap to display the
current printing page or to add dynamic data (Listing 2).

Listing 2. The page footer is printed just before terminating the current page. Here the routine might be improved by
raising an event (BeforeNewPage) in its client application.

Function PrintControl(Optional ShowDialog As Boolean) As Boolean
 Dim itmX As ListItem

 On Error GoTo ErrStampaLV
 SetPage m_Page
 Printer.Print " "
 Printer.CurrentY = 0
 PrintCText m_Page.Header, m_Page.LeftMargin * vbCM, _
 m_Page.RightMargin * vbCM
 Printer.CurrentX = m_Page.LeftMargin * vbCM
 Printer.CurrentY = m_Page.TopMargin * vbCM

 PrintCText m_Title, m_Page.LeftMargin * vbCM, _
 m_Page.RightMargin * vbCM
 Printer.CurrentY = Printer.CurrentY + vbCM / 2
 SetPrinterFont m_FontHeader
 PrintHeaderLV m_Control, m_Page.LeftMargin * vbCM, _
 m_Page.RightMargin * vbCM
 SetPrinterFont m_FontItem

Print ListView and TreeView Controls' Contents Downloaded from: CVibes.net Page 7 of 11

 m_PrintedItems = 0

 For Each itmX In m_Control.ListItems
 If (m_PrintOnlySelectedItems And itmX.Selected) Or _
 (Not m_PrintOnlySelectedItems) Then
 If Not CanPrintItem(itmX.Text, _
 m_ImageList.ImageHeight * Screen.TwipsPerPixelY, _
 m_Page.BottomMargin * vbCM) Then

 RaiseEvent BeforeNewPage
 Printer.CurrentY = Printer.CurrentY + _
 GetMax(Printer.TextHeight(itmX.Text), _
 m_ImageList.ImageHeight * Screen.TwipsPerPixelY)
 PrintCText m_Page.Footer, m_Page.LeftMargin * vbCM, _
 m_Page.RightMargin * vbCM

 Printer.NewPage
 PrintCText m_Page.Header, m_Page.LeftMargin * vbCM, _
 m_Page.RightMargin * vbCM
 Printer.CurrentY = m_Page.TopMargin * vbCM
 SetPrinterFont m_FontIntestazione
 PrintHeaderLV m_Control, m_Page.LeftMargin * vbCM, _
 m_Page.RightMargin * vbCM
 SetPrinterFont m_FontItem
 End If

 PrintItemLV itmX, m_Control, m_ImageList, _
 m_Page.LeftMargin * vbCM, m_Page.RightMargin * vbCM
 m_PrintedItems = m_PrintedItems + 1
 End If
 Next

 Printer.CurrentY = Printer.ScaleHeight - m_Page.BottomMargin
 PrintCText m_Page.Footer, m_Page.LeftMargin * vbCM, _
 m_Page.RightMargin * vbCM

 Printer.EndDoc
 PPrint = True
 Exit Function

ErrPrintLV:
 Printer.KillDoc
 MsgBox Err.Number & " " & Err.Description, vbExclamation,

"VB2THEMAX"

End Function

The printing of the icon that is associated to each row can be performed using the useful PaintPicture Printer
object's method:

Printer.PaintPicture ilLV.ListImages(itmX.SmallIcon).Picture, iLeft, iTop

To print the text of the item and its subitems we can use the same approach used to print the header. To correctly calculate
the Y coordinate we have to evaluate the height of each item (itmX.Height), which is the max between the image's height
and the text's height plus one pixel. Because of this, the Y coordinate must be calculated so that the item is printed
vertically with respect to the item's height (hRow):

Print ListView and TreeView Controls' Contents Downloaded from: CVibes.net Page 8 of 11

yImage = Printer.CurrentY + (hRow – hImage) / 2
yText = Printer.CurrentY + (hRow – hText) / 2

Note that the image height can be obtained from the ImageHeight property of the ImageList control, whereas we must
use the Printer object's TextHeight method to determine the height of the text.

TreeView Printing
At a first sight, printing the contents of a TreeView control might seem easier than printing a ListView control, because
there are no headers and no columns, and the text is always left aligned. The truth, however, is that printing the TreeView
nodes is probably much more complex than you probably imagine.

First, we have to determine the exact nodes sequence. This sequence can't be obtained by a mere cycle on the Nodes
collection, because the nodes in this collection are in the order with which they have been added, and this can be different
of the real nodes sequence displayed. The only way to retrieve the correct display order is to begin from the root node and
get each next node by the Child and Next properties. The Child property returns the first child node, whereas the Next
property returns the adjacent brother. These two properties must be used to call recursively the printing function. At the
first iteration the printing function receives the root node:

Private Sub PrintANode(nodX As Node)
 'printing node code
 If nodX.Children 0 Then
 PrintANode nodX.Child
 End If
 If Not nodX.Next Is Nothing Then
 PrintANode nodX.Next
 End If
End Sub

Let's see now how we can print an individual Node object. First, we have to check whether the current node can be printed
into the current page:

If Not CanPrintNode(nodX.Text, hImage, iBottomMargin) Then
 'Print the footer and got to new page
End If

The CanPrintNode function is a bit different from the CanPrintItem included in the CPrintListView class, because the
Node object hasn't the Height property. To obtain a Node's height the routine calculates the max between the image height
(ImageList.ImageHeight) and the text height returned by the Printer object's TextHeight method.

Next, we have to calculate the node's indentation level, by multiplying the depth level with the Indentation property. A
simple method to evaluate the depth level is by counting the number of separation chars (PathSeparator) embedded into
the FullPath property. This approach fails, however, if a Node's text can include the path separator. For instance, the
default PathSeparator property value is '\' and the FullPath property for a node at second level is something like:

ParentText\CurrentNodeText

but if the text of the current node is 'Word1\Word2' then the FullPath property returns

ParentText\Word1\Word2

In this case, just counting the number of separator characters we'd calculate an incorrect depth level. We can work around
this problem by using a path separator character that we know for sure never appears in Nodes' Text property or, better
yet, we can use a cycle that counts the number of parents:

Print ListView and TreeView Controls' Contents Downloaded from: CVibes.net Page 9 of 11

iLevel = 0
While Not nodX.Parent Is Nothing
 iLevel = iLevel + 1
 Set nodX = nodX.Parent
Wend

Multiplying the depth level value by the Indentation property we get the X coordinate value at which the node should
print. The code that prints the node's text and image is similar to the one used for left-aligned ListView items. But wait!
We are forgetting an important detail: the lines that link nodes with their parents! It turns out that the programming logic
that ensures that all such lines are correctly printed isn't as easy as one could hope. To understand the algorithm on which
the CPrintTreeView class is based you should have a look at the code in Listing 3.

Listing 3. Printing the lines that connect TreeView nodes.

'Printing the link lines

iCurrentY = Printer.CurrentY
If Not nodX.Parent Is Nothing Then
 'horitzontal line
 Printer.Line (m_Page.LeftMargin * vbCM + iLevel * iIndentation - _
 iIndentation / 2, iCurrentY + hRow / 2)- _
 (m_Page.LeftMargin * vbCM + iLevel * iIndentation - 2 * _
 Screen.TwipsPerPixelX, iCurrentY + hRow / 2)

 If nodX.Next Is Nothing Then
 Printer.Line (m_Page.LeftMargin * vbCM + iLevel * _
 iIndentation - iIndentation / 2, iCurrentY)- _
 (m_Page.LeftMargin * vbCM + iLevel * iIndentation - _
 iIndentation / 2, iCurrentY + hRow / 2)
 Else
 Printer.Line (m_Page.LeftMargin * vbCM + iLevel * _
 iIndentation - iIndentation / 2, iCurrentY)- _
 (m_Page.LeftMargin * vbCM + iLevel * iIndentation - _
 iIndentation / 2, iCurrentY + hRow)
 End If

 Set nodXX = nodX
 For j = iLevel To 1 Step -1
 Set nodP = nodXX.Parent
 If Not nodP Is Nothing Then
 If Not nodP.Next Is Nothing And Not nodP.Parent Is _
 Nothing Then
 Printer.Line (m_Page.LeftMargin * vbCM + _
 iIndentation / 2 + (j - 2) * _
 iIndentation, iCurrentY)- _
 (m_Page.LeftMargin * vbCM + iIndentation _
 / 2 + (j - 2) * iIndentation, _
 iCurrentY + hRow)
 End If
 End If
 Set nodXX = nodP
 If nodXX Is Nothing Then Exit For
 Next j
 End If

First of all, lines are printed only if the current Node has a Parent, and its parent is expanded (this routine doesn't print link
lines for any root node):

Print ListView and TreeView Controls' Contents Downloaded from: CVibes.net Page 10 of 11

If Not nodX.Parent Is Nothing Then
 'Print the lines
End If

Next, we print the horizontal line starting from the current node X coordinate until the half of the Indentation property
value, so to get to the middle point of the Parent node's width:

Printer.Line (iCurrentX - iIndentation / 2, iCurrentY + hRow / 2) _
 - iCurrentX - 2 * Screen.TwipsPerPixelX, iCurrentY + hRow / 2)

Figure 2. These three cases relate to the tests to be performed when drawing connecting lines in a TreeView
control.

The height of the vertical line which is perpendicular to the horizontal line just printed depends on whether there is
another brother node (cases 1 and 2 of Figure 2):

If nodX.Next Is Nothing Then
 Printer.Line (iCurrentX - iIndentation / 2, iCurrentY) _
 - (iCurrentX, iCurrentY + hRow / 2)
Else
 Printer.Line (iCurrentX - iIndentation / 2, iCurrentY) _
 - (iCurrentX, iCurrentY + hRow)
End If

The last step is the most difficult one: we need to print all lines that are correctly linked to the expanded node lines up in
the hierarchy. From Figure 2 we note that the vertical line printing has to be printed if a parent exists and it has a brother
(case 3 in Figure 3). This step must be repeated for all the levels except for the very first, which contains the root nodes:

For j = iLevel To 2 Step –1
 Set nodP = nodP.Parent
 If Not nodP Is Nothing Then
 If Not nodP.Next Is Nothing Then
 Printer.Line (iLeftMargin + iIndentation / 2 + (j - 2) _
 * iIndentation, iCurrentY)- (iLeftMargin + _
 iIndentation / 2 + (j - 2) * iIndentation, _
 iCurrentY + hRow)
 End If
 End If
Next i

Print ListView and TreeView Controls' Contents Downloaded from: CVibes.net Page 11 of 11

What we've left out
The example enclosed isn't complete, however, and it should be considered as a starting point to extend and improve
according to your own requirements. For example, the CPrintListView class could implement an automatic wordwrap
mechanism when the string to print is longer than the correspondent column width. It could also support multiple header
styles (square, grid...) and the capability to print borders and grid lines. Before and after printing an item the class might
raise an event (BeforePrint and AfterPrint) so to change the item values or to skip the printing of the current item
providing the classic Cancel parameter. The AfterPrint event can be used to add graphic or additional data, such as
secondary descriptions or totals and subtotals. On request, the class might be able to generate automatic totals on any
numeric column, to be print at the end of each page or at the end of the report.

To give the programmer the ability to display a percent progress bar, the routine should raise an event (ItemPrinted) at
the end of every item/node printing. Here the programmer could use PrintedItems and PrintedNodes properties to
determine the exact printing percentage.

In the enclosed example the CPrintListView and CPrintTreeView classes use the Page object to set page margins, but
they don't take into account the non-printable area of the page. The size of this area can be determined by calling the
GetDeviceCaps API with PHYSICALOFFSETX/Y constant, and it should be subtracted from the page margin so the
printing begins at the exact position. Another possible improvement is in the CPrintTreeView class, that doesn't support
printing neither root nodes lines nor the plus/minus symbols beside each Node.

Finally, the PrintControl method has a boolean parameter (ShowDialog) which isn't currently used. The purpose of this is
to display a Print common dialog to let the user select the printer and set other printing parameters, such as whether the
routine should print selected items or expanded nodes only.

What about an automatic abort dialog? or a print preview? Any suggestion is welcome.

Conclusion
Doubtlessly, writing classes is the best way to learn how to augment the capabilities of an existing control. Unfortunately,
there is one problem: we can't easily compile these classes into a separate ActiveX DLL. This problem occurs when an
ActiveX control such as a ListView, a ImageList or a TreeView is exposed by a class property. Once the DLL is
compiled, it won't correctly work on another computer. In fact, the instructions

Set oSLV.Control = ListView1
Set oSLV.ImageList = ImageList1

raise a "Type Mismatch" error message. This error occurs because these properties implicitly reference the Extender
object silently created by VB for each ActiveX control loaded in the IDE; such Extender object is different from machine
to machine, which explains why you can't compile the DLL on a system and use it on another one. In other words, you
must always include these classes in your projects, which is only a minor inconvenience if compared with the capabilities
that these classes add to your projects.

